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AKπ = −0.107 ± 0.018

M1 M2B

M1 M2 ∈ {π, ρ, K, K∗}with

probe strong dynamics and CP

B-factories: Br ,A, C, S
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Standard Model
B → M1M2 in the

A(B̄ → M1M2) =

“penguin”“tree”
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QCD for P,T:
expand in small #’s

SU(2) isospin

power counting

strong coupling

mu,d/ΛQCD ≈ 0.03

ΛQCD/EM ≈ 0.2

reduces # of non-perturbative inputs

αs ≈ 0.1 − 0.35



A little theory +
a lotta experiment:

103
P̂

ππ = (1.82 ± 0.86) − i(2.99 ± 0.74)

103
P̂

Kπ = −(4.45 ± 0.81) + i(3.23 ± 1.11)

large imaginary parts

(Jain, Rothstein, Stewart 07)

ˆ≡ /GF m
2

B
GeV

√
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Chasing large imaginary penguins

charm loops in the resonance region?

large missing short distance phase? 
SCET (Beneke, Jager), (Jain, Rothstein, Stewart): no 

annihilation?

new physics?

PQCD (Keum, Li, Sanda): yes
QCDF (Beneke, Buchalla, Neubert, Sachrajda): not computable
SCET  (CA, Ligeti, Rothstein, Stewart): no

?

?

?
?

X

X



: the SCET calculation

M1 M2B

p
+

p = n̄ · p
n

2
+ n · p

n̄

2
+ p⊥

p
−

n = (1, 0, 0, 1) n̄ = (1, 0, 0,−1)

η ∼

ΛQCD

Q
SCET   power expansion: series inII

B → M1M2



SCET  degrees of freedom
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Decay amplitude

A(B̄ → M1M2)

= −i〈M1M2|H
II

W |B̄〉

H
I

W

H
QCD
W

⊗

⊗

⊗

= −i ∗ matching coefficients
〈M1|cn fields|0〉

〈M2|cn̄ fields|0〉

〈0|soft fields|B̄〉



Classification of
power-suppressed amplitudes
Order in Time-ordered products Perturbative order Dependence

PropertiesΛ/mb in SCETI Annihilation Other in SCETII

A(0) Q(0)
i L

(1)
ξq , Q(0)

i L
(2)
ξq , Q(0)

i L
(1)
ξq L(1)

— αs(µi) φB
i φM

j φM ′

Real

Q(1)
i L

(1)
ξq — αs(µi) φB

+φMφM ′

Real

A(1) Q(j′=0,1)
i L

(j≤4)
ξq Πi L

(ki)
— αs(µi) Complex

Q(4)
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Real

Q(2)
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Real

Q(0)
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L
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]3
, Q(0)

i
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L
(1)
ξq

]3
L(1) α2

s(µi)/π α2
s(µi)/π Sj(k

+
1,2, k

−
3 ) . . . Complex

Q(0)
i

[

L
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ξq

]2
L

(2)
ξq , Q(1)

i

[

L
(1)
ξq

]3
α2

s(µi)/π α2
s(µi)/π Sj(k

+
1,2, k

−
3 ) . . . Complex

Q(2)
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L
(1)
ξq
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— α2

s(µi)/π Complex

Q(2)
i L

(1)
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i L
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A(2) Q(5)
i αs(µh) — fB µMφM

ppφM ′

Real

annihilation: “spectator” quark line ends at weak vertex



: local annihilation (ALRS)Q(4)

x ~ 1

mb

! M1

M2
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! ~ ""

! ~ "##

! ~ "#
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SCET :I

O(1L)
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2

m3
b
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q
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d̄sPRbv

][

ūn̄,ω2
/nPL qn̄,ω3
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q̄n,ω1
/̄nPLun,ω4

]

SCET   :II
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QCD:

O(1L)
1d =

2

m3
b

∑

q

[

d̄sPRbv

][

ūn̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLun,ω4

]
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O(1L)
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2

m3
b
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q
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ūsPRbv
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2

m3
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q,q′
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O(1L)
1d =

2

m3
b

∑

q

[

d̄sPRbv

][

ūn̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLun,ω4

]

a1u =
CF παs(µh)

N2
c

[

1

x̄2y
−

1

y(xȳ − 1)

]

ø

(

C1 +
3

2
C10

)

has coefficient function:

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
4(y, x)

π0K(∗)0, ρ0K(∗)0 1√
2

ãd
4(y, x)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãs
1(x, y) − ãs

3(x, y) − ãs
3(y, x)

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
1(x, y) − ãs

4(y, x) − ãs
3(x, y) − ãs

3(y, x)

K̄(∗)0K(∗)0 ãs
3(x, y) + ãs

3(y, x) + ãs
4(y, x)

TABLE III: Hard functions for B̄s decays for the annihilation amplitude A(1)
Lann in Eq. (23). {table1b}
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FIG. 2: Tree level annihilation graphs for B → M1M2 decays. Here soft, n, n̄ denote quarks that
are soft, n-collinear, and n̄-collinear respectively.

fig:Ann

where the ø-notation and term involving the Wilson coefficient d(µ±) are discussed below.

Note that the coefficients a3u,3c,4u,4c,7,8 are polluted in the sense of Ref. [5], meaning that

O(α2
s) matching results proportional to the large coefficients C1,2 could compete numerically.

The others are not polluted: a1u,2u involve C1,2 at O(αs), while a1c,2c,5,6 only get contributions

from electroweak penguins. Our results for the diagrams in Fig. 2 agree with Refs. [7, 10].

This includes the appearance of the combinations of momentum fractions in the functions

F (x, y) and F (ȳ, x̄), up to ø-distribution and d-term. For later convenience we define moment

parameters which convolute the hard coefficients with the distributions

βM1M2

iu =

∫ 1

0

dx dy [aiu(x, y)+κai+4(x, y)] φM1(y)φM2(x) ,

βM1M2

ic =

∫ 1

0

dx dy [aic(x, y)+κai+4(x, y)] φM1(y)φM2(x) . (26) {beta1}

In Eq. (25) the subscript ø denotes the fact that singular terms in convolution integrals

are finite in SCET due to the MS-factorization which involves convolution integrals such as

∑

x, x′ $=0

∫

dxr dx′
r δ(1−x−x′)

φM(x, x′, µ)

x̄2
, (27) {sums}

where x(′) and x(′)
r correspond to label and residual momenta [18]. Implementing x $= 0 and

x′ $= 0 requires zero-bin subtractions and divergences in the rapidity must also be regulated.
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 finite and real by zero-bin subtraction in
M(anohar)S(tewart)-rapidity factorization: 

Divergent convolution?

A ∝ fB

∫

dx dy
[ 1

x̄2y
−

1

y(xȳ − 1)

]

Ø
φM1

(x)φM2
(y) ∈ $



Where’s the zero-bin contribution?

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
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2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
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offending graph:
n

us

n-
n-hc
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counted in T-products
with 

[

L
(1)
ξq

]3
a)

q

k r

l

p

n1
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n1

n2

n2

b)

n1

n1

n2
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FIG. 3: Graphs which generate a strong phase in lowest order matching of SCETI operators onto

SCETII: a) has a Q(1), two L(1)
ξn1

q, and one L(1)
ξn2

q and contributes to the annihilation amplitude

at O(α2
s(µi)); and b) has a Q(1), one L(1)

ξn1
q, and one L(2)

ξn2
ξn2

and contributes to non-annihilation

amplitudes at O(αs(µi)). Dashed quark lines are n1 or n2 collinear, and solid quark lines are soft. {topann}

operator has the generic form

OII = J(n2 · p, n1 · l, n1 · r, n2 · q, n1 · k) (66)

× (q̄sSn1
)n1·r Γ(1)(S†

n2
qs)n2·q (q̄sSn2

)n1·k Γ(2)(S†
n1

hv) (q̄n1,lΓ
(3)qn1,l′) (q̄n2,p′Γ

(4)qn2,p)

where we use the shorthand subscript notation, (S†
ni

qs)ni·q ≡ [δ(ni·q − ni·P)S†
ni

qs]. We took

the jet directions to be n1 and n2, rather than n and n̄, to emphasize that the soft operator is

sensitive to the relative directions of the jets. The functions Si shown in Table I are defined

by the matrix element of this type of operator

Si(n1 ·k, n1 ·r, n2 ·q, ) ≡ 〈0|(q̄sSn1
)n1·r Γ(1)

i (S†
n2

qs)n2·q (q̄sSn2
)n1·k Γ(2)

i (S†
n1

hv)|B(v)〉 , (67) {Si}

where i runs over color, Dirac, and flavor structures. To count the factors of π in these

amplitudes, note that the hard-collinear contractions give g4, and that the matrix element

of the resulting four-quark operator, 〈0|(q̄ . . . q)(q̄ . . . bv)|B〉, is suppressed by 1/(4π)2 rel-

ative to 〈0|(q̄ . . . bv)|B〉. (The four-quark operator has an extra loop with no extra cou-

plings.) This demonstrates that nonperturbative complex contributions first occur at order

[αs(µi)2/π](Λ/mb), i.e., suppressed by [αs(µi)/π](Λ/mb) compared to the leading amplitudes.

The phases arising from the type of matrix element shown in Eq. (67) play a crucial role

in explaining the observed strong phases which arise in color suppressed decays [3]. Their

resulting operators predict the equality of amplitudes and strong phases between decays

involving D and D∗ mesons and have been confirmed in the data [38]. This type of dia-

grams also have long-distance contributions of the same order, which arise from time-ordered

products in SCETII and can also be complex. To see this note that the hard-collinear quark

propagator in Fig. 3a could also be on-shell (i.e., have O(Λ2) virtuality), in which case it

would remain open until the matrix element is taken at the low scale. By opening that line

we see that this contribution corresponds to the time-ordered product of a four-quark op-

erator and a six-quark operator, both of which are generated when matching onto SCETII.

A long-distance part is the same order in αs(µi) and does not change our conclusions about

30



Complex
annihilation

A(B̄ → M1M2)= −i ∗ matching coefficients

⊗

⊗

⊗

〈M1|cn fields|0〉

〈M2|cn̄ fields|0〉

〈0|soft fields|B̄〉
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a)

q

k r

l

p

n1

n1

n1

n2

n2

b)

n1

n1

n2

n2

FIG. 3: Graphs which generate a strong phase in lowest order matching of SCETI operators onto

SCETII: a) has a Q(1), two L(1)
ξn1
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ξn2

q and contributes to the annihilation amplitude

at O(α2
s(µi)); and b) has a Q(1), one L(1)

ξn1
q, and one L(2)

ξn2
ξn2

and contributes to non-annihilation

amplitudes at O(αs(µi)). Dashed quark lines are n1 or n2 collinear, and solid quark lines are soft. {topann}
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involving D and D∗ mesons and have been confirmed in the data [38]. This type of dia-
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non-perturbative strong phase
from incomplete cancellation of 

directed soft Wilson lines

∝ αs(µi)
2



three-parton annihilation (ARS)

x ~ 1
mb

! M1

M2

B

b)

x ~
1

mb

!

!( )1/2

Q(2)
L

(1)
ξq :

Q
(2)
id ∝

[

q̄′n′,ω5
Θusbv

][

d̄n̄,ω2
Θn̄qn̄,ω3

][

q̄n,ω1
Θnq′n,ω4

]

,

L
(1)
ξq = q̄′usig/B

⊥

n′q′n′=

O
(1T )
id ∝

1

n′ ·k

[

q̄′s,n′·kΓsbv

][

d̄n̄Γn̄qn̄

][

q̄nΓnq′n
]

igB⊥β
n′

match onto SCETII



n

na) b) c) d)

soft

x
x

y
y

QCD:

n’

b

O(1T )
1d =

1

m3
b k+

∑

q,q′

[

q̄′s,−k+PL/n S†
nbv

][

d̄n̄,ω2 /nPL qn̄,ω3

][

q̄n,ω1
/̄n (ig/B⊥)n,ω5

PR q′n,ω4

]

,

O(1T )
2d =

1

m3
b k−

∑

q,q′

[

q̄′s,−k−PL /̄n S†
n̄bv

][

d̄n̄,ω2 /n (ig/B⊥)n̄,ω5
PR qn̄,ω3

][

q̄n,ω1
/̄nPR q′n,ω4

]

,

O(1T )
3−4d = O(1T )

1−2d

3eq′

2

Q(2)
1d =

2

m3
b

∑

q,q′

[

q̄′n,ω5
PLγα

⊥T abv

][

d̄n̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄n γ⊥

α T aPR q′n,ω4

]

,

Q(2)
2d =

2

m3
b

∑

q,q′

[

q̄′n̄,ω5
PLγα

⊥T abv

][

d̄n̄,ω2
/nγ⊥

α T a PR qn̄,ω3

][

q̄n,ω1
/̄nPR q′n,ω4

]

,

Q(2)
3d,4d = Q(2)

1d,2d

3eq′

2

SCET :I

1 ⊗ 1 ⊗ 1+ similar with color

SCET   :II

x ~ 1
mb

! M1

M2

B

b)

x ~
1

mb

!

!( )1/2



ahc
1 (x, y, ȳ) =

παs(mb)

NC

{

2CF C5 + C6

y[x(1 − y) − 1]
+

(2CF − CA)C5 + C6

(1 − x)y(1 − ȳ)

}

,

ahc
2 (x, x̄, y) =

παs(mb)

NC

{

−

(2CF − CA)C5 + C6

x̄[(1 − x̄)(1 − y) − 1]
−

2CF C5 + C6

x̄y(1 − x)

}

hard matching coefficients: “polluted”

A
(1ann)
hard−collin =

GF fBmB
√

2 mbNc

(λ(d)
u +λ(d)

c )

∫

∞

0
dk

φ+
B(k)

k

×

{

f3M1
fM2

∫ 1

0
dx

∫ 1

0
dy

∫ 1−y

0
dȳ

HM1M2

hc1 (x, y, ȳ)

1 − y − ȳ
φ3M1

(y, ȳ)φM2
(x)

+ ηM1
fM1

f3M2

∫ 1

0
dy

∫ 1

0
dx

∫ 1−x

0
dx̄

HM1M2

hc2 (x, x̄, y)

1 − x − x̄
φM1

(y)φ3M2
(x, x̄)

}

,

factorization theorem:



Numerical estimates
simple model for distribution amplitudes

non-perturbative parameters from QCD sum 
rules and lattice QCD

large errors

three parton    local≈

|A(1)
Lann(K−π+)|

|A(1)
Expt.Penguin(Kπ)|

≈ 0.1 ± 0.1



Conclusion

eliminated a possible source of large penguins:
annihilation is factorizable and real


